/* * socket_linux.c * * Copyright 2013-2024 Michael Zillgith * * This file is part of Platform Abstraction Layer (libpal) * for libiec61850, libmms, and lib60870. */ #include "hal_socket.h" #include #include #include #include #include #include #include #include #include #include #include #include /* required for TCP keepalive */ #include #define _GNU_SOURCE #include #include #include "linked_list.h" #include "hal_thread.h" #include "lib_memory.h" #ifndef DEBUG_SOCKET #define DEBUG_SOCKET 0 #endif struct sSocket { int fd; uint32_t connectTimeout; }; struct sServerSocket { int fd; int backLog; }; struct sUdpSocket { int fd; int namespace; /* IPv4: AF_INET; IPv6: AF_INET6 */ }; struct sHandleSet { LinkedList sockets; bool pollfdIsUpdated; struct pollfd* fds; int nfds; }; HandleSet Handleset_new(void) { HandleSet self = (HandleSet) GLOBAL_MALLOC(sizeof(struct sHandleSet)); if (self) { self->sockets = LinkedList_create(); self->pollfdIsUpdated = false; self->fds = NULL; self->nfds = 0; } return self; } void Handleset_reset(HandleSet self) { if (self) { if (self->sockets) { LinkedList_destroyStatic(self->sockets); self->sockets = LinkedList_create(); self->pollfdIsUpdated = false; } } } void Handleset_addSocket(HandleSet self, const Socket sock) { if (self != NULL && sock != NULL && sock->fd != -1) { LinkedList_add(self->sockets, sock); self->pollfdIsUpdated = false; } } void Handleset_removeSocket(HandleSet self, const Socket sock) { if (self && self->sockets && sock) { LinkedList_remove(self->sockets, sock); self->pollfdIsUpdated = false; } } int Handleset_waitReady(HandleSet self, unsigned int timeoutMs) { /* check if pollfd array is updated */ if (self->pollfdIsUpdated == false) { if (self->fds) { GLOBAL_FREEMEM(self->fds); self->fds = NULL; } self->nfds = LinkedList_size(self->sockets); self->fds = GLOBAL_CALLOC(self->nfds, sizeof(struct pollfd)); int i; for (i = 0; i < self->nfds; i++) { LinkedList sockElem = LinkedList_get(self->sockets, i); if (sockElem) { Socket sock = (Socket) LinkedList_getData(sockElem); if (sock) { self->fds[i].fd = sock->fd; self->fds[i].events = POLL_IN; } } } self->pollfdIsUpdated = true; } if (self->fds && self->nfds > 0) { int result = poll(self->fds, self->nfds, timeoutMs); if (result == -1 && errno == EINTR) { result = 0; } if (result == -1) { if (DEBUG_SOCKET) printf("SOCKET: poll error (errno: %i)\n", errno); } return result; } else { /* there is no socket to wait for */ return 0; } } void Handleset_destroy(HandleSet self) { if (self) { if (self->sockets) LinkedList_destroyStatic(self->sockets); if (self->fds) GLOBAL_FREEMEM(self->fds); GLOBAL_FREEMEM(self); } } void Socket_activateTcpKeepAlive(Socket self, int idleTime, int interval, int count) { #if defined SO_KEEPALIVE int optval; socklen_t optlen = sizeof(optval); optval = 1; if (setsockopt(self->fd, SOL_SOCKET, SO_KEEPALIVE, &optval, optlen)) { if (DEBUG_SOCKET) printf("SOCKET: Failed to enable TCP keepalive\n"); } #if defined TCP_KEEPCNT optval = idleTime; if (setsockopt(self->fd, IPPROTO_TCP, TCP_KEEPIDLE, &optval, optlen)) { if (DEBUG_SOCKET) printf("SOCKET: Failed to set TCP keepalive TCP_KEEPIDLE parameter\n"); } optval = interval; if (setsockopt(self->fd, IPPROTO_TCP, TCP_KEEPINTVL, &optval, optlen)) { if (DEBUG_SOCKET) printf("SOCKET: Failed to set TCP keepalive TCP_KEEPINTVL parameter\n"); } optval = count; if (setsockopt(self->fd, IPPROTO_TCP, TCP_KEEPCNT, &optval, optlen)) { if (DEBUG_SOCKET) printf("SOCKET: Failed to set TCP keepalive TCP_KEEPCNT parameter\n"); } #endif /* TCP_KEEPCNT */ #endif /* SO_KEEPALIVE */ } static bool prepareAddress(const char* address, int port, struct sockaddr_in* sockaddr) { bool retVal = true; memset((char *) sockaddr, 0, sizeof(struct sockaddr_in)); if (address != NULL) { struct addrinfo addressHints; struct addrinfo *lookupResult; int result; memset(&addressHints, 0, sizeof(struct addrinfo)); addressHints.ai_family = AF_INET; result = getaddrinfo(address, NULL, &addressHints, &lookupResult); if (result != 0) { if (DEBUG_SOCKET) printf("SOCKET: getaddrinfo failed (code=%i)\n", result); retVal = false; goto exit_function; } memcpy(sockaddr, lookupResult->ai_addr, sizeof(struct sockaddr_in)); freeaddrinfo(lookupResult); } else sockaddr->sin_addr.s_addr = htonl(INADDR_ANY); sockaddr->sin_family = AF_INET; if (port < 0) port = 0; sockaddr->sin_port = htons(port); exit_function: return retVal; } static void setSocketNonBlocking(Socket self) { int flags = fcntl(self->fd, F_GETFL, 0); fcntl(self->fd, F_SETFL, flags | O_NONBLOCK); } static void activateTcpNoDelay(Socket self) { /* activate TCP_NODELAY option - packets will be sent immediately */ int flag = 1; setsockopt(self->fd, IPPROTO_TCP, TCP_NODELAY, (char *) &flag, sizeof(int)); } ServerSocket TcpServerSocket_create(const char* address, int port) { ServerSocket serverSocket = NULL; int fd; if ((fd = socket(AF_INET, SOCK_STREAM, 0)) >= 0) { struct sockaddr_in serverAddress; if (!prepareAddress(address, port, &serverAddress)) { close(fd); return NULL; } int optionReuseAddr = 1; setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *) &optionReuseAddr, sizeof(int)); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37) int tcpUserTimeout = 10000; int result = setsockopt(fd, SOL_TCP, TCP_USER_TIMEOUT, &tcpUserTimeout, sizeof(tcpUserTimeout)); if (result < 0) { if (DEBUG_SOCKET) printf("SOCKET: failed to set TCP_USER_TIMEOUT\n"); } #else #warning "TCP_USER_TIMEOUT not supported by linux kernel" #endif if (bind(fd, (struct sockaddr *) &serverAddress, sizeof(serverAddress)) >= 0) { serverSocket = (ServerSocket) GLOBAL_MALLOC(sizeof(struct sServerSocket)); serverSocket->fd = fd; serverSocket->backLog = 2; setSocketNonBlocking((Socket) serverSocket); } else { close(fd); return NULL ; } } return serverSocket; } void ServerSocket_listen(ServerSocket self) { if (listen(self->fd, self->backLog) == -1) { if (DEBUG_SOCKET) printf("SOCKET: listen failed (errno: %i)\n", errno); } } /* CHANGED TO MAKE NON-BLOCKING --> RETURNS NULL IF NO CONNECTION IS PENDING */ Socket ServerSocket_accept(ServerSocket self) { int fd; Socket conSocket = NULL; fd = accept(self->fd, NULL, NULL ); if (fd >= 0) { conSocket = (Socket) GLOBAL_CALLOC(1, sizeof(struct sSocket)); if (conSocket) { conSocket->fd = fd; setSocketNonBlocking(conSocket); activateTcpNoDelay(conSocket); } else { /* out of memory */ close(fd); if (DEBUG_SOCKET) printf("SOCKET: out of memory\n"); } } else { if (DEBUG_SOCKET) printf("SOCKET: accept failed (errno=%i)\n", errno); } return conSocket; } void ServerSocket_setBacklog(ServerSocket self, int backlog) { self->backLog = backlog; } static void closeAndShutdownSocket(int socketFd) { if (socketFd != -1) { if (DEBUG_SOCKET) printf("SOCKET: call shutdown for %i!\n", socketFd); /* shutdown is required to unblock read or accept in another thread! */ int result = shutdown(socketFd, SHUT_RDWR); if (result == -1) { if (DEBUG_SOCKET) printf("SOCKET: shutdown error: %i\n", errno); } result = close(socketFd); if (result == -1) { if (DEBUG_SOCKET) printf("SOCKET: close error: %i\n", errno); } } } void ServerSocket_destroy(ServerSocket self) { int fd = self->fd; self->fd = -1; closeAndShutdownSocket(fd); Thread_sleep(10); GLOBAL_FREEMEM(self); } Socket TcpSocket_create() { Socket self = (Socket)NULL; int sock = socket(AF_INET, SOCK_STREAM, 0); if (sock != -1) { self = (Socket) GLOBAL_MALLOC(sizeof(struct sSocket)); if (self) { self->fd = sock; self->connectTimeout = 5000; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37) int tcpUserTimeout = 10000; int result = setsockopt(sock, SOL_TCP, TCP_USER_TIMEOUT, &tcpUserTimeout, sizeof(tcpUserTimeout)); if (result == -1) { if (DEBUG_SOCKET) printf("SOCKET: failed to set TCP_USER_TIMEOUT (errno=%i)\n", errno); } #endif } else { /* out of memory */ close(sock); if (DEBUG_SOCKET) printf("SOCKET: out of memory\n"); } } else { if (DEBUG_SOCKET) printf("SOCKET: failed to create socket (errno=%i)\n", errno); } return self; } void Socket_setConnectTimeout(Socket self, uint32_t timeoutInMs) { self->connectTimeout = timeoutInMs; } bool Socket_bind(Socket self, const char* srcAddress, int srcPort) { struct sockaddr_in localAddress; if (!prepareAddress(srcAddress, srcPort, &localAddress)) return false; int result = bind(self->fd, (struct sockaddr*)&localAddress, sizeof(localAddress)); if (result == -1) { if (DEBUG_SOCKET) printf("SOCKET: failed to bind TCP socket (errno=%i)\n", errno); close(self->fd); self->fd = -1; return false; } return true; } bool Socket_connectAsync(Socket self, const char* address, int port) { struct sockaddr_in serverAddress; if (DEBUG_SOCKET) printf("SOCKET: connect: %s:%i\n", address, port); if (!prepareAddress(address, port, &serverAddress)) return false; fd_set fdSet; FD_ZERO(&fdSet); FD_SET(self->fd, &fdSet); activateTcpNoDelay(self); fcntl(self->fd, F_SETFL, O_NONBLOCK); if (connect(self->fd, (struct sockaddr *) &serverAddress, sizeof(serverAddress)) < 0) { if (errno != EINPROGRESS) { if (close(self->fd) == -1) { if (DEBUG_SOCKET) printf("SOCKET: failed to close socket (errno: %i)\n", errno); } self->fd = -1; return false; } } return true; /* is connecting or already connected */ } SocketState Socket_checkAsyncConnectState(Socket self) { struct timeval timeout; timeout.tv_sec = 0; timeout.tv_usec = 0; fd_set fdSet; FD_ZERO(&fdSet); FD_SET(self->fd, &fdSet); int selectVal = select(self->fd + 1, NULL, &fdSet , NULL, &timeout); if (selectVal == 1) { /* Check if connection is established */ int so_error; socklen_t len = sizeof so_error; if (getsockopt(self->fd, SOL_SOCKET, SO_ERROR, &so_error, &len) >= 0) { if (so_error == 0) return SOCKET_STATE_CONNECTED; } return SOCKET_STATE_FAILED; } else if (selectVal == 0) { return SOCKET_STATE_CONNECTING; } else { return SOCKET_STATE_FAILED; } } bool Socket_connect(Socket self, const char* address, int port) { if (Socket_connectAsync(self, address, port) == false) return false; struct timeval timeout; timeout.tv_sec = self->connectTimeout / 1000; timeout.tv_usec = (self->connectTimeout % 1000) * 1000; fd_set fdSet; FD_ZERO(&fdSet); FD_SET(self->fd, &fdSet); if (select(self->fd + 1, NULL, &fdSet , NULL, &timeout) == 1) { /* Check if connection is established */ int so_error; socklen_t len = sizeof so_error; if (getsockopt(self->fd, SOL_SOCKET, SO_ERROR, &so_error, &len) >= 0) { if (so_error == 0) return true; } } close (self->fd); self->fd = -1; return false; } static char* convertAddressToStr(struct sockaddr_storage* addr) { char addrString[INET6_ADDRSTRLEN + 7]; int port; bool isIPv6; if (addr->ss_family == AF_INET) { struct sockaddr_in* ipv4Addr = (struct sockaddr_in*) addr; port = ntohs(ipv4Addr->sin_port); inet_ntop(AF_INET, &(ipv4Addr->sin_addr), addrString, INET_ADDRSTRLEN); isIPv6 = false; } else if (addr->ss_family == AF_INET6) { struct sockaddr_in6* ipv6Addr = (struct sockaddr_in6*) addr; port = ntohs(ipv6Addr->sin6_port); inet_ntop(AF_INET6, &(ipv6Addr->sin6_addr), addrString, INET6_ADDRSTRLEN); isIPv6 = true; } else return NULL ; char* clientConnection = (char*) GLOBAL_MALLOC(strlen(addrString) + 9); if (isIPv6) sprintf(clientConnection, "[%s]:%i", addrString, port); else sprintf(clientConnection, "%s:%i", addrString, port); return clientConnection; } char* Socket_getPeerAddress(Socket self) { struct sockaddr_storage addr; socklen_t addrLen = sizeof(addr); if (getpeername(self->fd, (struct sockaddr*) &addr, &addrLen) == 0) { return convertAddressToStr(&addr); } else return NULL; } char* Socket_getLocalAddress(Socket self) { struct sockaddr_storage addr; socklen_t addrLen = sizeof(addr); if (getsockname(self->fd, (struct sockaddr*) &addr, &addrLen) == 0) { return convertAddressToStr(&addr); } else return NULL; } char* Socket_getPeerAddressStatic(Socket self, char* peerAddressString) { struct sockaddr_storage addr; socklen_t addrLen = sizeof(addr); getpeername(self->fd, (struct sockaddr*) &addr, &addrLen); char addrString[INET6_ADDRSTRLEN + 7]; int port; bool isIPv6; if (addr.ss_family == AF_INET) { struct sockaddr_in* ipv4Addr = (struct sockaddr_in*) &addr; port = ntohs(ipv4Addr->sin_port); inet_ntop(AF_INET, &(ipv4Addr->sin_addr), addrString, INET_ADDRSTRLEN); isIPv6 = false; } else if (addr.ss_family == AF_INET6) { struct sockaddr_in6* ipv6Addr = (struct sockaddr_in6*) &addr; port = ntohs(ipv6Addr->sin6_port); inet_ntop(AF_INET6, &(ipv6Addr->sin6_addr), addrString, INET6_ADDRSTRLEN); isIPv6 = true; } else return NULL ; if (isIPv6) sprintf(peerAddressString, "[%s]:%i", addrString, port); else sprintf(peerAddressString, "%s:%i", addrString, port); return peerAddressString; } int Socket_read(Socket self, uint8_t* buf, int size) { if (self->fd == -1) return -1; int read_bytes = recv(self->fd, buf, size, MSG_DONTWAIT); if (read_bytes == 0) return -1; if (read_bytes == -1) { int error = errno; switch (error) { case EAGAIN: return 0; case EBADF: return -1; default: if (DEBUG_SOCKET) printf("DEBUG_SOCKET: recv returned error (errno=%i)\n", error); return -1; } } return read_bytes; } int Socket_write(Socket self, uint8_t* buf, int size) { if (self->fd == -1) return -1; /* MSG_NOSIGNAL - prevent send to signal SIGPIPE when peer unexpectedly closed the socket */ int retVal = send(self->fd, buf, size, MSG_NOSIGNAL | MSG_DONTWAIT); if (retVal == -1) { if (errno == EAGAIN) { return 0; } else { if (DEBUG_SOCKET) printf("DEBUG_SOCKET: send returned error (errno=%i)\n", errno); } } return retVal; } void Socket_destroy(Socket self) { int fd = self->fd; self->fd = -1; closeAndShutdownSocket(fd); Thread_sleep(10); GLOBAL_FREEMEM(self); } static UdpSocket UdpSocket_createUsingNamespace(int namespace) { UdpSocket self = NULL; int sock = socket(namespace, SOCK_DGRAM, IPPROTO_UDP); if (sock != -1) { self = (UdpSocket) GLOBAL_MALLOC(sizeof(struct sSocket)); if (self) { self->fd = sock; self->namespace = namespace; } else { if (DEBUG_SOCKET) printf("SOCKET: failed to allocate memory\n"); close(sock); } } else { if (DEBUG_SOCKET) printf("SOCKET: failed to create UDP socket (errno=%i)\n", errno); } return self; } UdpSocket UdpSocket_create() { return UdpSocket_createUsingNamespace(AF_INET); } UdpSocket UdpSocket_createIpV6() { return UdpSocket_createUsingNamespace(AF_INET6); } bool UdpSocket_addGroupMembership(UdpSocket self, const char* multicastAddress) { if (self->namespace == AF_INET) { struct ip_mreq mreq; if (!inet_aton(multicastAddress, &(mreq.imr_multiaddr))) { printf("SOCKET: Invalid IPv4 multicast address\n"); return false; } else { mreq.imr_interface.s_addr = htonl(INADDR_ANY); if (setsockopt(self->fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof(mreq)) == -1) { printf("SOCKET: failed to set IPv4 multicast group (errno: %i)\n", errno); return false; } } return true; } else if (self->namespace == AF_INET6) { struct ipv6_mreq mreq; if (inet_pton(AF_INET6, multicastAddress, &(mreq.ipv6mr_multiaddr)) < 1) { printf("SOCKET: failed to set IPv6 multicast group (errno: %i)\n", errno); return false; } mreq.ipv6mr_interface = 0; if (setsockopt(self->fd, IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP, &mreq, sizeof(mreq)) == -1) { printf("SOCKET: failed to set IPv6 multicast group (errno: %i)\n", errno); return false; } return true; } return false; } bool UdpSocket_setMulticastTtl(UdpSocket self, int ttl) { if (self->namespace == AF_INET) { if (setsockopt(self->fd, IPPROTO_IP, IP_MULTICAST_TTL, &ttl, sizeof(ttl)) == -1) { printf("SOCKET: failed to set IPv4 multicast TTL (errno: %i)\n", errno); return false; } return true; } else if (self->namespace == AF_INET6) { if (setsockopt(self->fd, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, &ttl, sizeof(ttl)) == -1) { printf("SOCKET: failed to set IPv6 multicast TTL(hops) (errno: %i)\n", errno); return false; } return true; } return false; } bool UdpSocket_bind(UdpSocket self, const char* address, int port) { //TODO add support for IPv6 struct sockaddr_in localAddress; if (!prepareAddress(address, port, &localAddress)) { close(self->fd); self->fd = 0; return false; } int result = bind(self->fd, (struct sockaddr*)&localAddress, sizeof(localAddress)); if (result == -1) { if (DEBUG_SOCKET) printf("SOCKET: failed to bind UDP socket (errno=%i)\n", errno); close(self->fd); self->fd = 0; return false; } return true; } bool UdpSocket_sendTo(UdpSocket self, const char* address, int port, uint8_t* msg, int msgSize) { //TODO add support for IPv6 struct sockaddr_in remoteAddress; if (!prepareAddress(address, port, &remoteAddress)) { if (DEBUG_SOCKET) printf("SOCKET: failed to lookup remote address %s\n", address); return false; } int result = sendto(self->fd, msg, msgSize, 0, (struct sockaddr*)&remoteAddress, sizeof(remoteAddress)); if (result == msgSize) { return true; } else if (result == -1) { if (DEBUG_SOCKET) printf("SOCKET: failed to send UDP message (errno=%i)\n", errno); } else { if (DEBUG_SOCKET) printf("SOCKET: failed to send UDP message (insufficient data sent)\n"); } return false; } int UdpSocket_receiveFrom(UdpSocket self, char* address, int maxAddrSize, uint8_t* msg, int msgSize) { //TODO add support for IPv6 struct sockaddr_storage remoteAddress; memset(&remoteAddress, 0, sizeof(struct sockaddr_storage)); socklen_t structSize = sizeof(struct sockaddr_storage); int result = recvfrom(self->fd, msg, msgSize, MSG_DONTWAIT, (struct sockaddr*)&remoteAddress, &structSize); if (result == -1) { if (DEBUG_SOCKET) printf("SOCKET: failed to receive UDP message (errno=%i)\n", errno); } if (address) { bool isIPv6; char addrString[INET6_ADDRSTRLEN + 7]; int port; if (remoteAddress.ss_family == AF_INET) { struct sockaddr_in* ipv4Addr = (struct sockaddr_in*) &remoteAddress; port = ntohs(ipv4Addr->sin_port); inet_ntop(AF_INET, &(ipv4Addr->sin_addr), addrString, INET_ADDRSTRLEN); isIPv6 = false; } else if (remoteAddress.ss_family == AF_INET6) { struct sockaddr_in6* ipv6Addr = (struct sockaddr_in6*) &remoteAddress; port = ntohs(ipv6Addr->sin6_port); inet_ntop(AF_INET6, &(ipv6Addr->sin6_addr), addrString, INET6_ADDRSTRLEN); isIPv6 = true; } else return result; if (isIPv6) snprintf(address, maxAddrSize, "[%s]:%i", addrString, port); else snprintf(address, maxAddrSize, "%s:%i", addrString, port); } return result; }