You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
libiec61850/hal/socket/win32/socket_win32.c

956 lines
21 KiB
C

/*
* socket_win32.c
*
* Copyright 2013-2024 Michael Zillgith
*
* This file is part of Platform Abstraction Layer (libpal)
* for libiec61850, libmms, and lib60870.
*/
#define _WINSOCK_DEPRECATED_NO_WARNINGS
#define _CRT_SECURE_NO_WARNINGS
#include <winsock2.h>
#include <ws2tcpip.h>
#include <windows.h>
#include <stdbool.h>
#include <stdio.h>
#pragma comment(lib, "Ws2_32.lib")
#include "hal_socket.h"
#include "lib_memory.h"
#ifndef DEBUG_SOCKET
#define DEBUG_SOCKET 0
#endif
#ifndef __MINGW64_VERSION_MAJOR
struct tcp_keepalive
{
u_long onoff;
u_long keepalivetime;
u_long keepaliveinterval;
};
#endif
#define SIO_KEEPALIVE_VALS _WSAIOW(IOC_VENDOR, 4)
struct sSocket
{
SOCKET fd;
uint32_t connectTimeout;
};
struct sServerSocket
{
SOCKET fd;
int backLog;
};
struct sHandleSet
{
fd_set handles;
SOCKET maxHandle;
};
struct sUdpSocket
{
SOCKET fd;
int ns; /* IPv4: AF_INET; IPv6: AF_INET6 */
};
HandleSet
Handleset_new(void)
{
HandleSet result = (HandleSet)GLOBAL_MALLOC(sizeof(struct sHandleSet));
if (result != NULL)
{
FD_ZERO(&result->handles);
result->maxHandle = INVALID_SOCKET;
}
return result;
}
void
Handleset_reset(HandleSet self)
{
FD_ZERO(&self->handles);
self->maxHandle = INVALID_SOCKET;
}
void
Handleset_addSocket(HandleSet self, const Socket sock)
{
if (self != NULL && sock != NULL && sock->fd != INVALID_SOCKET)
{
FD_SET(sock->fd, &self->handles);
if ((sock->fd > self->maxHandle) || (self->maxHandle == INVALID_SOCKET))
self->maxHandle = sock->fd;
}
}
void
Handleset_removeSocket(HandleSet self, const Socket sock)
{
if (self != NULL && sock != NULL && sock->fd != INVALID_SOCKET)
{
FD_CLR(sock->fd, &self->handles);
}
}
int
Handleset_waitReady(HandleSet self, unsigned int timeoutMs)
{
int result;
if ((self != NULL) && (self->maxHandle != INVALID_SOCKET))
{
struct timeval timeout;
timeout.tv_sec = timeoutMs / 1000;
timeout.tv_usec = (timeoutMs % 1000) * 1000;
fd_set handles;
memcpy((void*)&handles, &(self->handles), sizeof(fd_set));
result = select(self->maxHandle + 1, &handles, NULL, NULL, &timeout);
}
else
{
result = -1;
}
return result;
}
void
Handleset_destroy(HandleSet self)
{
GLOBAL_FREEMEM(self);
}
static bool wsaStartupCalled = false;
static int socketCount = 0;
void
Socket_activateTcpKeepAlive(Socket self, int idleTime, int interval, int count)
{
(void)count; /* not supported in windows socket API */
struct tcp_keepalive keepalive;
DWORD retVal = 0;
keepalive.onoff = 1;
keepalive.keepalivetime = idleTime * 1000;
keepalive.keepaliveinterval = interval * 1000;
if (WSAIoctl(self->fd, SIO_KEEPALIVE_VALS, &keepalive, sizeof(keepalive), NULL, 0, &retVal, NULL, NULL) ==
SOCKET_ERROR)
{
if (DEBUG_SOCKET)
printf("WIN32_SOCKET: WSAIotcl(SIO_KEEPALIVE_VALS) failed: %d\n", WSAGetLastError());
}
}
static void
setSocketNonBlocking(Socket self)
{
unsigned long mode = 1;
if (ioctlsocket(self->fd, FIONBIO, &mode) != 0)
{
if (DEBUG_SOCKET)
printf("WIN32_SOCKET: failed to set socket non-blocking!\n");
}
/* activate TCP_NODELAY */
int tcpNoDelay = 1;
setsockopt(self->fd, IPPROTO_TCP, TCP_NODELAY, (const char*)&tcpNoDelay, sizeof(int));
}
static bool
prepareAddress(const char* address, int port, struct sockaddr_in* sockaddr)
{
memset((char*)sockaddr, 0, sizeof(struct sockaddr_in));
if (address != NULL)
{
struct hostent* server;
server = gethostbyname(address);
if (server == NULL)
return false;
memcpy((char*)&sockaddr->sin_addr.s_addr, (char*)server->h_addr, server->h_length);
}
else
sockaddr->sin_addr.s_addr = htonl(INADDR_ANY);
sockaddr->sin_family = AF_INET;
sockaddr->sin_port = htons(port);
return true;
}
static bool
wsaStartUp(void)
{
if (wsaStartupCalled == false)
{
int ec;
WSADATA wsa;
if ((ec = WSAStartup(MAKEWORD(2, 0), &wsa)) != 0)
{
if (DEBUG_SOCKET)
printf("WIN32_SOCKET: winsock error: code %i\n", ec);
return false;
}
else
{
wsaStartupCalled = true;
return true;
}
}
else
return true;
}
static void
wsaShutdown(void)
{
if (wsaStartupCalled)
{
if (socketCount == 0)
{
WSACleanup();
wsaStartupCalled = false;
}
}
}
ServerSocket
TcpServerSocket_create(const char* address, int port)
{
ServerSocket serverSocket = NULL;
int ec;
SOCKET listen_socket = INVALID_SOCKET;
if (wsaStartUp() == false)
return NULL;
struct sockaddr_in server_addr;
if (!prepareAddress(address, port, &server_addr))
return NULL;
listen_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (listen_socket == INVALID_SOCKET)
{
if (DEBUG_SOCKET)
printf("WIN32_SOCKET: socket failed with error: %i\n", WSAGetLastError());
wsaShutdown();
return NULL;
}
int optionReuseAddr = 1;
setsockopt(listen_socket, SOL_SOCKET, SO_REUSEADDR, (char*)&optionReuseAddr, sizeof(int));
ec = bind(listen_socket, (struct sockaddr*)&server_addr, sizeof(server_addr));
if (ec == SOCKET_ERROR)
{
if (DEBUG_SOCKET)
printf("WIN32_SOCKET: bind failed with error:%i\n", WSAGetLastError());
closesocket(listen_socket);
wsaShutdown();
return NULL;
}
serverSocket = (ServerSocket)GLOBAL_MALLOC(sizeof(struct sServerSocket));
if (serverSocket)
{
serverSocket->fd = listen_socket;
serverSocket->backLog = 10;
setSocketNonBlocking((Socket)serverSocket);
socketCount++;
}
else
{
closesocket(listen_socket);
wsaShutdown();
}
return serverSocket;
}
void
ServerSocket_listen(ServerSocket self)
{
listen(self->fd, self->backLog);
}
Socket
ServerSocket_accept(ServerSocket self)
{
Socket conSocket = NULL;
SOCKET fd = accept(self->fd, NULL, NULL);
if (fd != INVALID_SOCKET)
{
conSocket = (Socket)GLOBAL_CALLOC(1, sizeof(struct sSocket));
conSocket->fd = fd;
socketCount++;
setSocketNonBlocking(conSocket);
if (DEBUG_SOCKET)
printf("WIN32_SOCKET: connection accepted\n");
}
else
{
if (DEBUG_SOCKET)
printf("WIN32_SOCKET: accept failed\n");
}
return conSocket;
}
void
ServerSocket_setBacklog(ServerSocket self, int backlog)
{
self->backLog = backlog;
}
void
ServerSocket_destroy(ServerSocket self)
{
if (self->fd != INVALID_SOCKET)
{
shutdown(self->fd, 2);
closesocket(self->fd);
socketCount--;
self->fd = INVALID_SOCKET;
}
wsaShutdown();
GLOBAL_FREEMEM(self);
}
Socket
TcpSocket_create()
{
Socket self = NULL;
if (wsaStartUp() == false)
return NULL;
SOCKET sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock != INVALID_SOCKET)
{
self = (Socket)GLOBAL_MALLOC(sizeof(struct sSocket));
if (self)
{
self->fd = sock;
self->connectTimeout = 5000;
socketCount++;
}
else
{
if (DEBUG_SOCKET)
printf("SOCKET: failed to create socket - cannot allocate memory\n");
closesocket(sock);
wsaShutdown();
}
}
else
{
if (DEBUG_SOCKET)
printf("SOCKET: failed to create socket (error code=%i)\n", WSAGetLastError());
}
return self;
}
void
Socket_setConnectTimeout(Socket self, uint32_t timeoutInMs)
{
self->connectTimeout = timeoutInMs;
}
bool
Socket_bind(Socket self, const char* srcAddress, int srcPort)
{
struct sockaddr_in localAddress;
if (!prepareAddress(srcAddress, srcPort, &localAddress))
return false;
int result = bind(self->fd, (struct sockaddr*)&localAddress, sizeof(localAddress));
if (result == SOCKET_ERROR)
{
if (DEBUG_SOCKET)
printf("SOCKET: failed to bind TCP socket (errno=%i)\n", WSAGetLastError());
closesocket(self->fd);
self->fd = -1;
return false;
}
return true;
}
bool
Socket_connectAsync(Socket self, const char* address, int port)
{
if (DEBUG_SOCKET)
printf("WIN32_SOCKET: Socket_connect: %s:%i\n", address, port);
struct sockaddr_in serverAddress;
if (wsaStartUp() == false)
return false;
if (!prepareAddress(address, port, &serverAddress))
return false;
setSocketNonBlocking(self);
if (connect(self->fd, (struct sockaddr*)&serverAddress, sizeof(serverAddress)) == SOCKET_ERROR)
{
if (WSAGetLastError() != WSAEWOULDBLOCK)
{
closesocket(self->fd);
self->fd = INVALID_SOCKET;
return false;
}
}
return true; /* is connecting or already connected */
}
SocketState
Socket_checkAsyncConnectState(Socket self)
{
struct timeval timeout;
timeout.tv_sec = 0;
timeout.tv_usec = 0;
fd_set fdSet;
FD_ZERO(&fdSet);
FD_SET(self->fd, &fdSet);
int selectVal = select(self->fd + 1, NULL, &fdSet, NULL, &timeout);
if (selectVal == 1)
{
/* Check if connection is established */
int so_error;
int len = sizeof so_error;
if (getsockopt(self->fd, SOL_SOCKET, SO_ERROR, (char*)(&so_error), &len) != SOCKET_ERROR)
{
if (so_error == 0)
{
int recvRes = recv(self->fd, NULL, 0, 0);
if (recvRes == SOCKET_ERROR)
{
int wsaError = WSAGetLastError();
if (wsaError == WSAECONNRESET)
return SOCKET_STATE_FAILED;
if (wsaError == WSAECONNABORTED)
return SOCKET_STATE_FAILED;
}
return SOCKET_STATE_CONNECTED;
}
}
return SOCKET_STATE_FAILED;
}
else if (selectVal == 0)
{
return SOCKET_STATE_CONNECTING;
}
else
{
return SOCKET_STATE_FAILED;
}
}
bool
Socket_connect(Socket self, const char* address, int port)
{
if (Socket_connectAsync(self, address, port) == false)
return false;
struct timeval timeout;
timeout.tv_sec = self->connectTimeout / 1000;
timeout.tv_usec = (self->connectTimeout % 1000) * 1000;
fd_set fdSet;
FD_ZERO(&fdSet);
FD_SET(self->fd, &fdSet);
if (select(self->fd + 1, NULL, &fdSet, NULL, &timeout) == 1)
{
/* Check if connection is established */
int so_error;
socklen_t len = sizeof so_error;
if (getsockopt(self->fd, SOL_SOCKET, SO_ERROR, (char*)&so_error, &len) >= 0)
{
if (so_error == 0)
return true;
}
}
closesocket(self->fd);
self->fd = INVALID_SOCKET;
return false;
}
static char*
convertAddressToStr(struct sockaddr_storage* addr)
{
char addrString[INET6_ADDRSTRLEN + 7];
int addrStringLen = INET6_ADDRSTRLEN + 7;
int port;
bool isIPv6;
if (addr->ss_family == AF_INET)
{
struct sockaddr_in* ipv4Addr = (struct sockaddr_in*)addr;
port = ntohs(ipv4Addr->sin_port);
ipv4Addr->sin_port = 0;
WSAAddressToString((LPSOCKADDR)ipv4Addr, sizeof(struct sockaddr_storage), NULL, (LPSTR)addrString,
(LPDWORD)&addrStringLen);
isIPv6 = false;
}
else if (addr->ss_family == AF_INET6)
{
struct sockaddr_in6* ipv6Addr = (struct sockaddr_in6*)addr;
port = ntohs(ipv6Addr->sin6_port);
ipv6Addr->sin6_port = 0;
WSAAddressToString((LPSOCKADDR)ipv6Addr, sizeof(struct sockaddr_storage), NULL, (LPSTR)addrString,
(LPDWORD)&addrStringLen);
isIPv6 = true;
}
else
return NULL;
char* clientConnection = (char*)GLOBAL_MALLOC(strlen(addrString) + 9);
if (isIPv6)
sprintf(clientConnection, "[%s]:%i", addrString, port);
else
sprintf(clientConnection, "%s:%i", addrString, port);
return clientConnection;
}
char*
Socket_getPeerAddress(Socket self)
{
struct sockaddr_storage addr;
socklen_t addrLen = sizeof(addr);
if (getpeername(self->fd, (struct sockaddr*)&addr, &addrLen) == 0)
{
return convertAddressToStr(&addr);
}
else
return NULL;
}
char*
Socket_getLocalAddress(Socket self)
{
struct sockaddr_storage addr;
socklen_t addrLen = sizeof(addr);
if (getsockname(self->fd, (struct sockaddr*)&addr, &addrLen) == 0)
{
return convertAddressToStr(&addr);
}
else
return NULL;
}
char*
Socket_getPeerAddressStatic(Socket self, char* peerAddressString)
{
struct sockaddr_storage addr;
int addrLen = sizeof(addr);
getpeername(self->fd, (struct sockaddr*)&addr, &addrLen);
char addrString[INET6_ADDRSTRLEN + 7];
int addrStringLen = INET6_ADDRSTRLEN + 7;
int port;
bool isIPv6;
if (addr.ss_family == AF_INET)
{
struct sockaddr_in* ipv4Addr = (struct sockaddr_in*)&addr;
port = ntohs(ipv4Addr->sin_port);
ipv4Addr->sin_port = 0;
WSAAddressToString((LPSOCKADDR)ipv4Addr, sizeof(struct sockaddr_storage), NULL, (LPSTR)addrString,
(LPDWORD)&addrStringLen);
isIPv6 = false;
}
else if (addr.ss_family == AF_INET6)
{
struct sockaddr_in6* ipv6Addr = (struct sockaddr_in6*)&addr;
port = ntohs(ipv6Addr->sin6_port);
ipv6Addr->sin6_port = 0;
WSAAddressToString((LPSOCKADDR)ipv6Addr, sizeof(struct sockaddr_storage), NULL, (LPSTR)addrString,
(LPDWORD)&addrStringLen);
isIPv6 = true;
}
else
return NULL;
if (isIPv6)
sprintf(peerAddressString, "[%s]:%i", addrString, port);
else
sprintf(peerAddressString, "%s:%i", addrString, port);
return peerAddressString;
}
int
Socket_read(Socket self, uint8_t* buf, int size)
{
int bytes_read = recv(self->fd, (char*)buf, size, 0);
if (bytes_read == 0) /* peer has closed socket */
return -1;
if (bytes_read == SOCKET_ERROR)
{
if (WSAGetLastError() == WSAEWOULDBLOCK)
return 0;
else
return -1;
}
return bytes_read;
}
int
Socket_write(Socket self, uint8_t* buf, int size)
{
int bytes_sent = send(self->fd, (char*)buf, size, 0);
if (bytes_sent == SOCKET_ERROR)
{
int errorCode = WSAGetLastError();
if (errorCode == WSAEWOULDBLOCK)
bytes_sent = 0;
else
bytes_sent = -1;
}
return bytes_sent;
}
void
Socket_destroy(Socket self)
{
if (self->fd != INVALID_SOCKET)
{
shutdown(self->fd, 2);
closesocket(self->fd);
self->fd = INVALID_SOCKET;
socketCount--;
}
wsaShutdown();
GLOBAL_FREEMEM(self);
}
static UdpSocket
UdpSocket_createUsingNamespace(int ns)
{
if (wsaStartUp() == false)
return NULL;
UdpSocket self = NULL;
SOCKET sock = socket(AF_INET, SOCK_DGRAM, 0);
if (sock != INVALID_SOCKET)
{
self = (UdpSocket)GLOBAL_MALLOC(sizeof(struct sSocket));
if (self)
{
self->fd = sock;
self->ns = ns;
}
else
{
if (DEBUG_SOCKET)
printf("SOCKET: failed to allocate memory\n");
closesocket(sock);
}
}
else
{
if (DEBUG_SOCKET)
printf("SOCKET: failed to create UDP socket (errno=%i)\n", WSAGetLastError());
}
return self;
}
UdpSocket
UdpSocket_create()
{
return UdpSocket_createUsingNamespace(AF_INET);
}
UdpSocket
UdpSocket_createIpV6()
{
return UdpSocket_createUsingNamespace(AF_INET6);
}
bool
UdpSocket_addGroupMembership(UdpSocket self, const char* multicastAddress)
{
if (self->ns == AF_INET)
{
struct ip_mreq mreq;
if (inet_pton(AF_INET, multicastAddress, &(mreq.imr_multiaddr)) < 1)
{
printf("SOCKET: Invalid IPv4 multicast address\n");
return false;
}
else
{
mreq.imr_interface.s_addr = htonl(INADDR_ANY);
if (setsockopt(self->fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, (const char*)&mreq, sizeof(mreq)) == -1)
{
printf("SOCKET: failed to set IPv4 multicast group (errno: %i)\n", WSAGetLastError());
return false;
}
}
return true;
}
else if (self->ns == AF_INET6)
{
struct ipv6_mreq mreq;
if (inet_pton(AF_INET6, multicastAddress, &(mreq.ipv6mr_multiaddr)) < 1)
{
printf("SOCKET: failed to set IPv6 multicast group (errno: %i)\n", WSAGetLastError());
return false;
}
mreq.ipv6mr_interface = 0;
if (setsockopt(self->fd, IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP, (const char*)&mreq, sizeof(mreq)) == -1)
{
printf("SOCKET: failed to set IPv6 multicast group (errno: %i)\n", WSAGetLastError());
return false;
}
return true;
}
return false;
}
bool
UdpSocket_setMulticastTtl(UdpSocket self, int ttl)
{
if (self->ns == AF_INET)
{
if (setsockopt(self->fd, IPPROTO_IP, IP_MULTICAST_TTL, (const char*)&ttl, sizeof(ttl)) == -1)
{
printf("SOCKET: failed to set IPv4 multicast TTL (errno: %i)\n", WSAGetLastError());
return false;
}
return true;
}
else if (self->ns == AF_INET6)
{
if (setsockopt(self->fd, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, (const char*)&ttl, sizeof(ttl)) == -1)
{
printf("SOCKET: failed to set IPv6 multicast TTL(hops) (errno: %i)\n", WSAGetLastError());
return false;
}
return true;
}
return false;
}
bool
UdpSocket_bind(UdpSocket self, const char* address, int port)
{
// TODO add support for IPv6
struct sockaddr_in localAddress;
if (!prepareAddress(address, port, &localAddress))
{
closesocket(self->fd);
self->fd = 0;
return false;
}
int result = bind(self->fd, (struct sockaddr*)&localAddress, sizeof(localAddress));
if (result == -1)
{
if (DEBUG_SOCKET)
printf("SOCKET: failed to bind UDP socket (errno=%i)\n", errno);
closesocket(self->fd);
self->fd = 0;
return false;
}
return true;
}
bool
UdpSocket_sendTo(UdpSocket self, const char* address, int port, uint8_t* msg, int msgSize)
{
// TODO add support for IPv6
struct sockaddr_in remoteAddress;
if (!prepareAddress(address, port, &remoteAddress))
{
if (DEBUG_SOCKET)
printf("SOCKET: failed to lookup remote address %s\n", address);
return false;
}
int result =
sendto(self->fd, (const char*)msg, msgSize, 0, (struct sockaddr*)&remoteAddress, sizeof(remoteAddress));
if (result == msgSize)
{
return true;
}
else if (result == -1)
{
if (DEBUG_SOCKET)
printf("SOCKET: failed to send UDP message (errno=%i)\n", errno);
}
else
{
if (DEBUG_SOCKET)
printf("SOCKET: failed to send UDP message (insufficient data sent)\n");
}
return false;
}
int
UdpSocket_receiveFrom(UdpSocket self, char* address, int maxAddrSize, uint8_t* msg, int msgSize)
{
// TODO add support for IPv6
struct sockaddr_storage remoteAddress;
memset(&remoteAddress, 0, sizeof(struct sockaddr_storage));
socklen_t structSize = sizeof(struct sockaddr_storage);
if (address)
address[0] = 0;
int result = recvfrom(self->fd, (char*)msg, msgSize, 0, (struct sockaddr*)&remoteAddress, &structSize);
if (result == 0) /* peer has closed socket */
return -1;
if (result == SOCKET_ERROR)
{
if (WSAGetLastError() == WSAEWOULDBLOCK)
return 0;
else
return -1;
}
if (address)
{
bool isIPv6;
char addrString[INET6_ADDRSTRLEN + 7];
int port;
if (remoteAddress.ss_family == AF_INET)
{
struct sockaddr_in* ipv4Addr = (struct sockaddr_in*)&remoteAddress;
port = ntohs(ipv4Addr->sin_port);
inet_ntop(AF_INET, &(ipv4Addr->sin_addr), addrString, INET_ADDRSTRLEN);
isIPv6 = false;
}
else if (remoteAddress.ss_family == AF_INET6)
{
struct sockaddr_in6* ipv6Addr = (struct sockaddr_in6*)&remoteAddress;
port = ntohs(ipv6Addr->sin6_port);
inet_ntop(AF_INET6, &(ipv6Addr->sin6_addr), addrString, INET6_ADDRSTRLEN);
isIPv6 = true;
}
else
return result;
if (isIPv6)
snprintf(address, maxAddrSize, "[%s]:%i", addrString, port);
else
snprintf(address, maxAddrSize, "%s:%i", addrString, port);
}
return result;
}