|
|
|
@ -187,3 +187,365 @@
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
# 2. HAL库外设初始化过程
|
|
|
|
|
|
|
|
|
|
## 2.1. 串口外设句柄
|
|
|
|
|
|
|
|
|
|
stm32f1xx_hal_uart.h 的160行;
|
|
|
|
|
|
|
|
|
|
```c
|
|
|
|
|
typedef struct __UART_HandleTypeDef
|
|
|
|
|
{
|
|
|
|
|
USART_TypeDef *Instance; /*!< UART registers base address */
|
|
|
|
|
|
|
|
|
|
UART_InitTypeDef Init; /*!< UART communication parameters */
|
|
|
|
|
|
|
|
|
|
const uint8_t *pTxBuffPtr; /*!< Pointer to UART Tx transfer Buffer */
|
|
|
|
|
|
|
|
|
|
uint16_t TxXferSize; /*!< UART Tx Transfer size */
|
|
|
|
|
|
|
|
|
|
__IO uint16_t TxXferCount; /*!< UART Tx Transfer Counter */
|
|
|
|
|
|
|
|
|
|
uint8_t *pRxBuffPtr; /*!< Pointer to UART Rx transfer Buffer */
|
|
|
|
|
|
|
|
|
|
uint16_t RxXferSize; /*!< UART Rx Transfer size */
|
|
|
|
|
|
|
|
|
|
__IO uint16_t RxXferCount; /*!< UART Rx Transfer Counter */
|
|
|
|
|
|
|
|
|
|
__IO HAL_UART_RxTypeTypeDef ReceptionType; /*!< Type of ongoing reception */
|
|
|
|
|
|
|
|
|
|
__IO HAL_UART_RxEventTypeTypeDef RxEventType; /*!< Type of Rx Event */
|
|
|
|
|
|
|
|
|
|
DMA_HandleTypeDef *hdmatx; /*!< UART Tx DMA Handle parameters */
|
|
|
|
|
|
|
|
|
|
DMA_HandleTypeDef *hdmarx; /*!< UART Rx DMA Handle parameters */
|
|
|
|
|
|
|
|
|
|
HAL_LockTypeDef Lock; /*!< Locking object */
|
|
|
|
|
|
|
|
|
|
__IO HAL_UART_StateTypeDef gState; /*!< UART state information related to global Handle management
|
|
|
|
|
and also related to Tx operations.
|
|
|
|
|
This parameter can be a value of @ref HAL_UART_StateTypeDef */
|
|
|
|
|
|
|
|
|
|
__IO HAL_UART_StateTypeDef RxState; /*!< UART state information related to Rx operations.
|
|
|
|
|
This parameter can be a value of @ref HAL_UART_StateTypeDef */
|
|
|
|
|
|
|
|
|
|
__IO uint32_t ErrorCode; /*!< UART Error code */
|
|
|
|
|
|
|
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
|
|
|
|
void (* TxHalfCpltCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Tx Half Complete Callback */
|
|
|
|
|
void (* TxCpltCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Tx Complete Callback */
|
|
|
|
|
void (* RxHalfCpltCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Rx Half Complete Callback */
|
|
|
|
|
void (* RxCpltCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Rx Complete Callback */
|
|
|
|
|
void (* ErrorCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Error Callback */
|
|
|
|
|
void (* AbortCpltCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Abort Complete Callback */
|
|
|
|
|
void (* AbortTransmitCpltCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Abort Transmit Complete Callback */
|
|
|
|
|
void (* AbortReceiveCpltCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Abort Receive Complete Callback */
|
|
|
|
|
void (* WakeupCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Wakeup Callback */
|
|
|
|
|
void (* RxEventCallback)(struct __UART_HandleTypeDef *huart, uint16_t Pos); /*!< UART Reception Event Callback */
|
|
|
|
|
|
|
|
|
|
void (* MspInitCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Msp Init callback */
|
|
|
|
|
void (* MspDeInitCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Msp DeInit callback */
|
|
|
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
|
|
|
|
|
|
|
|
|
} UART_HandleTypeDef;
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
和定时器的代码组织方式是一样的,包含和串口的属性以及操作的函数指针。基本解释可以参考教科书269页。
|
|
|
|
|
|
|
|
|
|
## 2.2. 串口初始化数据类型(p270)
|
|
|
|
|
|
|
|
|
|
stm32f1xx_hal_uart.h 的46行;
|
|
|
|
|
|
|
|
|
|
```c
|
|
|
|
|
typedef struct
|
|
|
|
|
{
|
|
|
|
|
uint32_t BaudRate; /*!< This member configures the UART communication baud rate.
|
|
|
|
|
The baud rate is computed using the following formula:
|
|
|
|
|
- IntegerDivider = ((PCLKx) / (16 * (huart->Init.BaudRate)))
|
|
|
|
|
- FractionalDivider = ((IntegerDivider - ((uint32_t) IntegerDivider)) * 16) + 0.5 */
|
|
|
|
|
|
|
|
|
|
uint32_t WordLength; /*!< Specifies the number of data bits transmitted or received in a frame.
|
|
|
|
|
This parameter can be a value of @ref UART_Word_Length */
|
|
|
|
|
|
|
|
|
|
uint32_t StopBits; /*!< Specifies the number of stop bits transmitted.
|
|
|
|
|
This parameter can be a value of @ref UART_Stop_Bits */
|
|
|
|
|
|
|
|
|
|
uint32_t Parity; /*!< Specifies the parity mode.
|
|
|
|
|
This parameter can be a value of @ref UART_Parity
|
|
|
|
|
@note When parity is enabled, the computed parity is inserted
|
|
|
|
|
at the MSB position of the transmitted data (9th bit when
|
|
|
|
|
the word length is set to 9 data bits; 8th bit when the
|
|
|
|
|
word length is set to 8 data bits). */
|
|
|
|
|
|
|
|
|
|
uint32_t Mode; /*!< Specifies whether the Receive or Transmit mode is enabled or disabled.
|
|
|
|
|
This parameter can be a value of @ref UART_Mode */
|
|
|
|
|
|
|
|
|
|
uint32_t HwFlowCtl; /*!< Specifies whether the hardware flow control mode is enabled or disabled.
|
|
|
|
|
This parameter can be a value of @ref UART_Hardware_Flow_Control */
|
|
|
|
|
|
|
|
|
|
uint32_t OverSampling; /*!< Specifies whether the Over sampling 8 is enabled or disabled, to achieve higher speed (up to fPCLK/8).
|
|
|
|
|
This parameter can be a value of @ref UART_Over_Sampling. This feature is only available
|
|
|
|
|
on STM32F100xx family, so OverSampling parameter should always be set to 16. */
|
|
|
|
|
} UART_InitTypeDef;
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
StopBits
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
Parity
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
Mode
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
HwFlowCtl
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
注意:一般串口通信都使用三根线,不会用到硬件流控。
|
|
|
|
|
|
|
|
|
|
OverSampling
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
## 2.3. 串口初始化过程
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
1. MX_USART2_UART_Init:该函数位于main.c,有框架自动生成;用于初始化串口句柄;
|
|
|
|
|
2. HAL_UART_Init:位于 stm32f1xx_hal_uart.c;这是硬件抽象的初始化代码,并不关心具体的硬件,其中调用了HAL_UART_MspInit,用于实现真正的串口初始化功能 ;该文件中有个 HAL_UART_MspInit 函数的 weak定义;
|
|
|
|
|
3. HAL_UART_MspInit:位于 stm32f1xx_hal_msp.c;这里才是真正关于串口的初始化;
|
|
|
|
|
|
|
|
|
|
因此:stm32f1xx_hal_uart.c 中定义的是操作硬件的接口(类似Java的接口,所有的函数,常量等,编程一般也只需要和该文件打交道);stm32f1xx_hal_msp.c 是真正的实现,实现具体的硬件层面的操作。这样的设计就可以不改变接口的情况下,适配多个不同硬件。
|
|
|
|
|
|
|
|
|
|
# 3. 轮询方式的串口通信
|
|
|
|
|
|
|
|
|
|
## 3.1. 轮询方式的接口函数
|
|
|
|
|
|
|
|
|
|
### 3.1.1. 串口初始化函数(HAL_UART_Init)
|
|
|
|
|
|
|
|
|
|
该函数用于串口的初始化。将串口外设句柄中的参数写人对应的寄存器,并调用MCU硬件初始化函数HAL_UART_MspInit()完成时钟、引脚和中断等系统级初始化操作。具体描述如表 9-9所示。
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
### 3.1.2. 串口轮询方式发送丽数(HAL UART_Transmit)
|
|
|
|
|
|
|
|
|
|
该函数用于在轮询方式下发送指定数量的数据。具体描述如表9-10所示
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
### 3.1.3. 串口轮询方式接收函数(HAL UART_Receive)
|
|
|
|
|
|
|
|
|
|
该函数用于在轮询方式下接收指定数量的数据。具体描述如表9-11所示。
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
## 3.2. 固定长度的数据收发
|
|
|
|
|
|
|
|
|
|
1. 开发板串口使用PA2和PA3:
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
点击任意一个端口:
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
知道使用的是串口2
|
|
|
|
|
|
|
|
|
|
2. 设置串口2的参数:
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
问题:
|
|
|
|
|
|
|
|
|
|
1. Hardware Flow Control 是什么意思?
|
|
|
|
|
2. Over Sampling (过采样)是什么意思?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. 代码编写:
|
|
|
|
|
|
|
|
|
|
```c
|
|
|
|
|
/* USER CODE BEGIN 2 */
|
|
|
|
|
uint8_t uartBuf[5];
|
|
|
|
|
/* USER CODE END 2 */
|
|
|
|
|
|
|
|
|
|
/* Infinite loop */
|
|
|
|
|
/* USER CODE BEGIN WHILE */
|
|
|
|
|
while (1) {
|
|
|
|
|
/* USER CODE END WHILE */
|
|
|
|
|
|
|
|
|
|
/* USER CODE BEGIN 3 */
|
|
|
|
|
if (HAL_UART_Receive(&huart2, uartBuf, 5, 100) == HAL_OK) {
|
|
|
|
|
HAL_UART_Transmit(&huart2, uartBuf, 5, 100);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
/* USER CODE END 3 */
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
下载程序后,连接TYPE-C到计算机的USB(可能需要安装驱动),然后打开串口通信软件,设置波特率等参数与开发板一致;发送5个字符,会收到开发板的回应(必须是一次性发送5个字符,不能分开发送)。
|
|
|
|
|
|
|
|
|
|
# 4. 中断方式的串口通信
|
|
|
|
|
|
|
|
|
|
中断的效率更高。
|
|
|
|
|
|
|
|
|
|
## 4.1. 中断方式的接口函数
|
|
|
|
|
|
|
|
|
|
### 4.1.1. 串口中断方式发送函数(HAL_UART_Transmit IT)
|
|
|
|
|
|
|
|
|
|
该函数用于在中断方式下发送指定数量的数据,具体描述如表9-12所示:
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
### 4.1.2. 串口中断方式接收函数(HALUART_Receive_IT)
|
|
|
|
|
|
|
|
|
|
该函数用于在中断方式下接收指定数量的数据,具体描述如表9-13 所示:
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
### 4.1.3. 串口中断通用处理函数(HAL_UART_IRQHandler)
|
|
|
|
|
|
|
|
|
|
该函数是所有串口中断发生后的通用处理程序。任何一个串口的相关中断(如发送中断或接收中断)发生后,都会通过中断向量表中的串口中断服务程序USARTx_IRQHandler()调用该函数。在函数内部会完成具体的数据收发,最后调用不同的回调函数来完成后续的中断处理任务。具体描述如表 9-14所示:
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
### 4.1.4. 串口发送中断回调函数(HAL_UART_TxCpltCallback)
|
|
|
|
|
|
|
|
|
|
该函数用于处理在中断方式下发送完指定数量数据后的后续任务。任何一个串口发送完指定数量数据后,都会调用发送中断回调函数。因此,在函数内部需要判断是哪一个串口产生的本次发送中断回调,然后再执行具体的中断处理任务。具体描述如表9-15所示:
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
### 4.1.5. 串口接收中断回调函数(HAL_UART_RxCpltCallback)
|
|
|
|
|
|
|
|
|
|
该函数用于处理在中断方式下接收完指定数量数据后的后续任务。任何一个串口接收完指定数量数据后,都会调用接收中断回调函数。因此,在函数内部需要判断是哪一个串口产生的本次接收中断回调,然后再执行具体的中断处理任务。具体描述如表9-16所示:
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
### 4.1.6. 串口中断使能函数(__HAL_UART_ENABLE_IT)
|
|
|
|
|
|
|
|
|
|
该函数用于使能对应的串口中断类型,采用带参数的宏实现(宏函数),具体描述如表 9-17 所示:
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
### 4.1.7. 串口中断标志查询函数(__HAL_UART_GET_FLAG)
|
|
|
|
|
|
|
|
|
|
该函数用于查询对应的串口中断标志是否置位,采用带参数的宏实现(宏函数),具体描述如表 9-18 所示:
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
### 4.1.8. 空闲中断标志清除函数( __HAL_UART_CLEAR_IDLEFLAG)
|
|
|
|
|
|
|
|
|
|
该函数用于清除串口的空闲中断标志,采用带参数的宏实现(宏函数),具体描述如表 9-19 所示:
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
## 4.2. 任务:使用中断方式实现简单的通信协议(p289)
|
|
|
|
|
|
|
|
|
|
1. 与查询方式一样的设置串口,需要打开串口的全局中断:
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
2. 设置PA6为输出,Label为LED1;PA7为输出,Label为LED2
|
|
|
|
|
3. 完善代码:
|
|
|
|
|
|
|
|
|
|
```c
|
|
|
|
|
/* USER CODE BEGIN 0 */
|
|
|
|
|
#define LENGTH 4 // 接收帧的长度
|
|
|
|
|
uint8_t RxBuffer[LENGTH]; // 接收缓冲
|
|
|
|
|
volatile uint8_t RxFlag = 0; // 是否收到数据的标志
|
|
|
|
|
|
|
|
|
|
const char *MSG1 = "Please enter instruction.";
|
|
|
|
|
const char *MSG2 = "Head->0xAA Device->0x01 Operation->0x00/0x01 Tail->0x55.";
|
|
|
|
|
const char *ERRMSG = "Communication Error! Please try again!";
|
|
|
|
|
|
|
|
|
|
// 中断回调函数
|
|
|
|
|
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) {
|
|
|
|
|
if (huart->Instance == USART2) {
|
|
|
|
|
RxFlag = 1; // 设置帧标志,主函数处理这个标志
|
|
|
|
|
HAL_UART_Receive_IT(&huart2, RxBuffer, LENGTH); // 再次启动中断接收
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
/* USER CODE END 0 */
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
```c
|
|
|
|
|
int main(void) {
|
|
|
|
|
|
|
|
|
|
/* USER CODE BEGIN 1 */
|
|
|
|
|
|
|
|
|
|
/* USER CODE END 1 */
|
|
|
|
|
|
|
|
|
|
/* MCU Configuration--------------------------------------------------------*/
|
|
|
|
|
|
|
|
|
|
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
|
|
|
|
|
HAL_Init();
|
|
|
|
|
|
|
|
|
|
/* USER CODE BEGIN Init */
|
|
|
|
|
|
|
|
|
|
/* USER CODE END Init */
|
|
|
|
|
|
|
|
|
|
/* Configure the system clock */
|
|
|
|
|
SystemClock_Config();
|
|
|
|
|
|
|
|
|
|
/* USER CODE BEGIN SysInit */
|
|
|
|
|
|
|
|
|
|
/* USER CODE END SysInit */
|
|
|
|
|
|
|
|
|
|
/* Initialize all configured peripherals */
|
|
|
|
|
MX_GPIO_Init();
|
|
|
|
|
MX_USART2_UART_Init();
|
|
|
|
|
/* USER CODE BEGIN 2 */
|
|
|
|
|
HAL_UART_Transmit(&huart2, (uint8_t*) MSG1, strlen(MSG1), 100); // 发送提示
|
|
|
|
|
HAL_UART_Transmit(&huart2, (uint8_t*) MSG2, strlen(MSG2), 100); // 发送提示
|
|
|
|
|
|
|
|
|
|
HAL_UART_Receive_IT(&huart2, RxBuffer, LENGTH); // 启动中断接收
|
|
|
|
|
/* USER CODE END 2 */
|
|
|
|
|
|
|
|
|
|
/* Infinite loop */
|
|
|
|
|
/* USER CODE BEGIN WHILE */
|
|
|
|
|
while (1) {
|
|
|
|
|
/* USER CODE END WHILE */
|
|
|
|
|
|
|
|
|
|
/* USER CODE BEGIN 3 */
|
|
|
|
|
if (RxFlag) { // 判断帧接收标志
|
|
|
|
|
RxFlag = 0; // 清除帧接收标志
|
|
|
|
|
if (RxBuffer[0] == 0xAA && RxBuffer[3] == 0x55) { // 判断头尾数据是否合法
|
|
|
|
|
switch (RxBuffer[1]) {
|
|
|
|
|
case 1: // 灯1
|
|
|
|
|
if (RxBuffer[2])
|
|
|
|
|
HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin,
|
|
|
|
|
GPIO_PIN_SET);
|
|
|
|
|
else
|
|
|
|
|
HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin,
|
|
|
|
|
GPIO_PIN_RESET);
|
|
|
|
|
break;
|
|
|
|
|
case 2: // 灯2
|
|
|
|
|
if (RxBuffer[2])
|
|
|
|
|
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin,
|
|
|
|
|
GPIO_PIN_SET);
|
|
|
|
|
else
|
|
|
|
|
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin,
|
|
|
|
|
GPIO_PIN_RESET);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
// 非法格式,返回错误
|
|
|
|
|
HAL_UART_Transmit(&huart2, (uint8_t*) ERRMSG, strlen(ERRMSG),
|
|
|
|
|
100);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
/* USER CODE END 3 */
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
思考:
|
|
|
|
|
|
|
|
|
|
1. 这个简单的格式解析是通信当中的语法和意义;但是还有些不完善,会存在什么缺陷?
|
|
|
|
|
2. 应该如何解决这些问题?
|
|
|
|
|
|
|
|
|
|
# 5. DMA方式的串口通信
|